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Abstract -When testing a cylindrical polymeric sample by sinusoidal loading with a constant stress 
amplitude, vibrational frequencies may occur at which a “thermal explosion” leads to the destruction of the 
test sample. It is shown how upper and lower bounds of these critical frequencies can be derived by an 

application of linear methods. 

NOMENCLATURE 

Biot number ; 
parameter in the analytic expression for the 
heat generation ; 
sample length ; 
parameter in the analytic expression for the 

heat generation; 
radial distance; 
sample radius ; 
secant ; 
tangent ; 
temperature distribution in and on the test 

sample ; 
temperature of the surroundings of the test 
sample ; 
heat generated by cyclic loading; 
maximum of the dimensionless temperature 
difference y = /I( T - T,,) ; 

axial distance. 

Greek symbols 

a, heat-transfer coefficient; 

B> parameter in the analytic expression for the 
heat generation; 

6 compounded parameter which represents 
the experimenter’s influence on the gene- 
ration of heat ; 

E, deformation, with the amplitude E,, ; 
i, dimensionless axial coordinate ; 
K, thermal conductivity; 

v, frequency of the oscillating load, with 27~~ 

= 0; 

v&4, lower bound of v; 
V rn, upper bound of v; 

P, dimensionless radial coordinate; 

0, stress, with the amplitude c,,. 

1. INTRODUCTION 

BY A LONG established procedure, mechanical proper- 
ties of materials are obtained from testing samples by 
subjecting them to a cyclic loading. For an in- 

vestigation of this type, it is of crucial importance to 
achieve a stationary thermal state of the sample. Such a 
stationary thermal state will only result if the intrinsi- 

cally produced heat (the vibrational heating due to the 
viscous resistance of the material) is balanced by the 

heat transferred from the sample into its surroundings, 
whereas something resembling the heat explosion in 
exothermic chemical reactions [l, 21 occurs if such a 
balance cannot be established. While a stationary 
thermal state is easily attained for metals on account of 

their high thermal conductivity, polymeric materials 
are found to behave differently. 

Let cro be the stress amplitude and let co be the 

deformation amplitude, then the two well known 

testing conditions are E,, = constant and rrO = 
constant. It has been observed that the condition co 
= constant leads to a rapidly established stationary 

thermal state whereas for the condition crO = constant, 
critical sample states exist beyond which the thermal 
explosion takes place [3]. 

In a recent paper [4], a method has been introduced 

by which a response function v(y,) was shown to be 
characteristic of the stationary thermal states of the 

sample. Here, v designates the frequency of the oscillat- 

ing load and y, designates the maximum of y = 

T- T,,, where T,, is the constant temperature of the 
surroundings and T is the temperature distribution in 
and on the test sample. In particular, an approxi- 
mation method has been put forward in [4] by which 
continuous upper and lower bounds v,( y,) and 

vhf(y~) of v(Y,), viz. 

VM(Y,) s V(Y,) 5 V,(Y,) (1) 

may be derived by solving appropriately defined linear 
boundary value problems. Because of the strongly 
nonlinear dependence of the vibrational heating on the 
temperature, the mathematical derivation of the tem- 
perature distribution y and hence of the response 
function v(y,) is of considerable difficulty, and the 
introduction of a linear approximation method is 
therefore of an appreciable advantage. In [4], the 
derivation of vM(ym) and v,,,( y,) was carried out for the 
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stationary thermal states J five plastics for which the 
intrinsic heat generation as a function of the tempera- 

ture had been determined experimentally by [5]. 
Because of the test condition t:,, = constant, no critical 
values of v were found. It is the aim of this paper to 
show that for a test condition e0 = constant. critical 
values 6, of a parameter fi which depends on v, exist 

and that upper and lower bounds of 6, may be derived 

by the same linear methods which were employed 
in [4]. 

2. WBRATIONAL HEATING OF POLYMERS 

Following [6-91, the generation of heat due to the 

viscous resistance of the polymeric material is given by 
a function W which is of the following form for a 

testing condition e0 = constant : 

W= $a~w’-“Kexp(b(T- T,)). (2) 

Here, (r,, is the stress amplitude and w = 27~ is the 

frequency of the oscillating axial stress 0’: 

0 = o0 sin(W). (3) 

The test sample is in the form of a cylinder ofa radius R 

and of a length L. Assuming the following symmetric 

radial and axial boundary conditions: 

dT 
dr + cc(T- T,,) = 0 at r = R, 

T= 0 at z = & -i (4) 

one may introduce the following dimensionless entities 

PI : 
v = B(T - T,,), p = r/R. i’ = z/R, Bi = clR. (5) 

Then the dimensionless temperature distribution 

y(<,p) results from the following boundary value 
problem of Fourier’s equation with a nonlinearity 

given by W= 6exp(y): 

~- + (Bi)y = 0 for L) = 1, 
?[I 

(6) 

y = 0 for 1: = k LJ2R. 

On account of the symmetry of problem (6), the 
nonnegative solution y possesses a unique single 
maximum yrn = y(O,O). From (2), the parameter 6 is 
derived as (cf. [IS]): 

6 = h(o) = 4 Ka,++“~R21k-. (7) 

Here, /?, K and II are the parameters appearing in (2) 
and K designates the thermal conductivity of the 
material. 

As described in [4], it is possible to consider 6 as a 
dependent parameter by introducing the maximum y, 
as an independent parameter, whereby the solutions of 
problem (6) are obtained in the following parametric 
representation : 

(y(i,p; .v,), iY!~,,JJ. 

From the definition of y,,,, one derives that: 

(XJ 

y(O,O; \‘,J = i /,/ !Y) 

(5(~,) assumes the role of a response function. with the 
extrema of a(~,,,) relating to the branching points of 

problem (6). From the viewpoint of physical appli- 
cations, the critical points of (6) are of particular 

interest. Critical points are particular branching points 
which separate branches of stable solutions from 

branches of unstable solutions of problem (6). It can be 

shown that critical points always correspond to an 
extremum of fi(y,). Because of the fact that (y = 0, ii 

= 0) represents a stable solution of (6) which can hc 
analytically continued, it can be deduced that o(,,>,) 
contains a branch emerging from J ,,, = 0. (i = 0, such 
that the solutions (8) of (6) related to this branch of 
6(r,) are stable solutions. For the particular non- 

linearity [ - exp(y)] of problem (6). it can be shown 
that only a single critical solution exists (cf. Gray and 
Lee [Z] in their discussion of the result of Steggerda 
[lo], Istratov and Librovich [l I]), which then nec- 
essarily corresponds to a maximum (5, of 6( y,J in which 

ends the “stable” branch of (i(~,,,) emerging from i,, 
= 0, d = 0. It is the aim of the theory ofheat explosions 
[l] to determine the critical solutions of (6) and, in 
particular, the critical values ijc of 6 : a maximum ci~ of 
6(y,), for instance, signifies the occurrence of values 

6 > 6, for which no solutions of problem (6) exist. The 
condition of nonexistence of a stationary thermal state 
[given by either a stable or an unstable solution of 
problem (6)] is taken to signify the occurrence of ;I 

thermal explosion [il. 
In [4] it was demonstrated how to get upper and 

lower bounds for those branches of 6(y,) which 
correspond to stable solutions of (6). It will he 
demonstrated presently how this method can be 

carried further to obtain upper and lower bounds of 

the critical value 6, of 6. 

3. I-HE CONSTRUCTlOh OV BOUNDS OF 
ii( v,,) BY LINEAR METHODS 

For a given solution maximum _r,,, with 0 <: yrn -;; ’ , 

FIG. 1. Linear majorants and linear minorants ol’ IV(~) 
zz exp(y) for a given value of I’,,,. 
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FIG. 2. Continuous upper and lower bounds of 6(y,) for an 
infinite circular cylinder with Bi = co. 

the closest linear majorant to w(y) = exp(y) on 
0 5 y 5 y, is the secant s(y, y,) (cf. Fig. 1): 

~(Y,Y,) = (exp(y,) - l)y/y, + 1. (10) 

Insertion of (10) for exp(y) in problem (6) and solving 
the resulting linear problem under the condition that 
its solution is to attain the maximum value y, for [ 
= 0, p = 0 furnishes a value a,(~,,,) for which holds 
that: 
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Y, 

For Bi = 0.4, the exact value 6, = 0.26639 results 
and one finds the lower bound bnrc = 0.259 and the 
upper bound Li,, = 0.2668. 

FIG 3. Continuous upper and lower bounds of fi(y,,,) for a The same method will now be applied to the 
finite cylinder with Bi = 0. problem of a finite cylinder of the length L= 30mm, 

6 

L 

0.5 1 1.5 - 
Y, 

FIG. 4. Continuous upper and lower bounds of 6(y,) for a 
finite cylinder with Bi = 0.1. 

WY,) s &Y,). (11) 

For a given value of y, with 0 < y, < 1, the closest 
positive linear minorant to w(y) = exp(y) is the tan- 
gent t(y,y,) (cf. Fig. 1): 

r(y,y,) = yexp(y,) + (1 - y,)exp(yA (12) 

Insertion of (12) for exp( y) in problem (6) and solving 
the resulting linear problem under the condition that 
its solution is to attain the maximum value y, for [ 
= 0, p = 0 furnishes a value 6,(y,) for which holds 
that : 

G,) 6 UY,). (13) 

For y, = 1, a critical tangent t* is obtained which 
passes through the origin (cf. Fig. 1). From t*, a value 
6* results which constitutes a universal upper bound 
for a(~,,,) for any value of y,,, (cf. Ratner and Koborov 
[3], Hudjaev [12]). 

In order to show how the linear approximation 
method works and in order to give an impression of 
how good the bounds are which can be derived, the 
proposed method is applied to the problem of an 
infinite circular cylinder where the exact solution 6(y,) 
is known for any value of Biot’s number : (Bi) > 0 (cf. 
[6]). In Fig. 2 the result is given for Bi = X. For Bi 

= co, the exact value 6, = 2 results and one finds the 
lower bound 6 Mc = 1.815 and for the upper bound a,, 
= 2.1275. 
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FIG. 5. Continuous upper and lower bounds of 6(~,) for a 
finire cylinder with Bi = Y,. 

and the radius R = 4mm. which has been under 
investigation in [4] also. For this sample shape. the 
exact solution of problem (6) is not known. The 
resulting bounds from the approximation by linear 
majorants and minorants for the Biot numbers Bi = 0, 

Bi = 0.1 and Bi = y_ are given in Figs 3-5. The upper 
and lower bounds of the critical values 6, are listed in 

Table 1. 
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Table I. Upper bound 6* and lower bound c?,~,. of the crltrcai 
value 6, for various Biot-numbers Hi for a finite circular 

cylinder with L= 3Omm and R 7 4mm 
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THEORIE DE L’EXPLOSION THERMIQUE ET DIJ CHAUFFAGE 
VIBRATIONNEL DES POLYMERS 

Rbsumi--Lorsqu’une dprouvette cylindrique de polymere esl soumise i une contrainto smusolilale 
d’amplitude constante, des frkquences peuvent apparaitre pour lesquelles une ‘explosion thermiyue’ conduit j 
la destruction de IXprouvette. On montre comment les front&es de ce domaine de friquences critiques 

peuvent &re dkterminies par application des mtthodes 1inCaires. 

THEORIE DER WliRMEEXPLOSlON UND DAS AUFHEIZEN VON 
POLYMEREN DIJRCH SCHWINGUNGEN 

Zusammenfassung--Beim Dauerschwingversuch mit konstanter Spannungsamplitude an emcr zylmdri- 
schen Polymerprobe kiinnen Schwingungsfrequenzen auftreten, bei denen eine Wlrmeexplosion zur 
Zerstiirung der Probe fiihrt Es wird gezeigt, wie die Ober- und Untergrenzen dieser k&is&en Frequenzen 

durch Anwendung linearer Methoden abgeleitet werden klinnen. 
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