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Abstract —When testing a cylindrical polymeric sample by sinusoidal loading with a constant stress

amplitude, vibrational frequencies may occur at which a “thermal explosion” leads to the destruction of the

test sample. It is shown how upper and lower bounds of these critical frequencies can be derived by an
application of linear methods.

NOMENCLATURE
Bi, Biot number;
K, parameter in the analytic expression for the

heat generation;

L, sample length;

n, parameter in the analytic expression for the
heat generation ;

t, radial distance;

R, sample radius;

S, secant;

I, tangent;

T, temperature distribution in and on the test
sample;

To, temperature of the surroundings of the test
sample;

W,  heat generated by cyclic loading;

Vm»  maximum of the dimensionless temperature
difference y = (T — T,);

z, axial distance.

Greek symbols

a, heat-transfer coefficient ;

B, parameter in the analytic expression for the
heat generation;

0, compounded parameter which represents

the experimenter’s influence on the gene-
ration of heat;
deformation, with the amplitude &,;

Ny

¢, dimensionless axial coordinate;
K, thermal conductivity;
v, frequency of the oscillating load, with 2nv

vy, lower bound of v;

V., upper bound of v;

2, dimensionless radial coordinate;
o, stress, with the amplitude o,,.

1. INTRODUCTION

BY A LONG established procedure, mechanical proper-
ties of materials are obtained from testing samples by
subjecting them to a cyclic loading. For an in-
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vestigation of this type, it is of crucial importance to
achieve a stationary thermal state of the sample. Sucha
stationary thermal state will only result if the intrinsi-
cally produced heat (the vibrational heating due to the
viscous resistance of the material) is balanced by the
heat transferred from the sample into its surroundings,
whereas something resembling the heat explosion in
exothermic chemical reactions [1, 2] occurs if such a
balance cannot be established. While a stationary
thermal state is easily attained for metals on account of
their high thermal conductivity, polymeric materials
are found to behave differently.

Let o, be the stress amplitude and let ¢, be the
deformation amplitude, then the two well known
testing conditions are g = constant and 6, =
constant. It has been observed that the condition ¢,
= constant leads to a rapidly established stationary
thermal state whereas for the condition o, = constant,
critical sample states exist beyond which the thermal
explosion takes place [3].

In a recent paper [4], a method has been introduced
by which a response function v(y,,) was shown to be
characteristic of the stationary thermal states of the
sample. Here, v designates the frequency of the oscillat-
ing load and y,, designates the maximum of y =
T— T,, where T, is the constant temperature of the
surroundings and T is the temperature distribution in
and on the test sample. In particular, an approxi-
mation method has been put forward in [4] by which
continuous upper and lower bounds v,(y,) and

Vu(yum) of v(y,), viz.
vM(ym) g v(yM) § vm(ym) (1)

may be derived by solving appropriately defined linear
boundary value problems. Because of the strongly
nonlinear dependence of the vibrational heating on the
temperature, the mathematical derivation of the tem-
perature distribution y and hence of the response
function v(y,) is of considerable difficulty, and the
introduction of a linear approximation method is
therefore of an appreciable advantage. In [4], the
derivation of vy(y,,) and v,,(y,,) was carried out for the
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stationary thermal states Jf five plastics for which the
intrinsic heat generation as a function of the tempera-
ture had been determined experimentally by [5].
Because of the test condition ¢, = constant, no critical
values of v were found. It is the aim of this paper to
show that for a test condition ¢, = constant, critical
values d, of a parameter § which depends on v, exist
and that upper and lower bounds of §, may be derived
by the same linear methods which were employed

in [4].
2. VIBRATIONAL HEATING OF POLYMERS

Following [6-9], the generation of heat due to the
viscous resistance of the polymeric material is given by
a function W which is of the following form for a
testing condition o, = constant:

W=loiw' " Kexp(B(T— To)). ()

Here, o, 1s the stress amplitude and w = 2zv is the
frequency of the oscillating axial stress o:

g = 04 sin(wt). (3)

The test sampleis in the form of a cylinder of a radius R
and of a length L. Assuming the following symmetric
radial and axial boundary conditions:

oT
T‘F(X(T— To)=0 atr=R,
"

T=0 atz=+—- (4)

t\)‘{‘*

one may introduce the following dimensionless entities
[8]:

v=BT Ty, p=r/R, {=z/R, Bi=aR. (5)

Then the dimensionless temperature distribution
y({, p) results from the following boundary value
problem of Fourier’s equation with a nonlinearity
given by W= dexp(y):

*y @y + Loy + dexp(y) =0

AT AT exp(y) =

o dpt pdp P

cy .

S+ (Bi)y =0 forp=1, (6)
ap

yv=0 for{=+ L/2R.

On account of the symmetry of problem (6), the
nonnegative solution y possesses a unique single
maximum y,, = ¥(0,0). From (2), the parameter J is
derived as (cf. [8]):

8 = d(w) = s Koo' "pR/k. (7)

Here, B, K and n are the parameters appearing in (2)
and k designates the thermal conductivity of the
material.

As described in [4], it is possible to consider J as a
dependent parameter by introducing the maximum y,,
as an independent parameter, whereby the solutions of
problem (6) are obtained in the following parametric
representation:
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W03 Y 030)). {8)
From the definition of y,, one derives that:
30,05y, = v, ()

J(y.,) assumes the role of a response function, with the
extrema of d(y,,) relating to the branching points of
problem (6). From the viewpoint of physical appli-
cations, the critical points of (6) are of particular
interest. Critical points are particular branching points
which separate branches of stable solutions from
branches of unstable solutions of problem (6). It can be
shown that critical points always correspond to an
extremum of 4(y,,). Because of the fact that (1 = 0. é
= 0) represents a stable solution of (6) which can be
analytically continued, it can be deduced that o(,)
contains a branch emerging from y,, = 0, ¢ = 0, such
that the solutions (8) of (6) related to this branch of
o(y,,) are stable solutions. For the particular non-
linearity [ ~ exp(y)] of problem (6), it can be shown
that only a single critical solution exists (cf. Gray and
Lee [2] in their discussion of the result of Steggerda
[10], Istratov and Librovich [11]), which then nec-
essarily corresponds to a maximum &, of (y,,) in which
ends the “stable” branch of 4(y,,) emerging from y,,
= 0,0 = 0. Itis the aim of the theory of heat explosions
{1] to determine the critical solutions of (6) and, in
particular, the critical values d, of 0 : a maximum J, of
3 y.), for instance, signifies the occurrence of values
é > 8, for which no solutions of problem (6) exist. The
condition of nonexistence of a stationary thermal state
[given by either a stable or an unstable solution of
problem (6)] is taken to signify the occurrence of a
thermal explosion {1].

In [4] it was demonstrated how to get upper and
lower bounds for those branches of d(y,) which
correspond to stable solutions of (6). Tt will be
demonstrated presently how this method can be
carried further to obtain upper and lower bounds of
the critical value d, of d.

3. THE CONSTRUCTION OF BOUNDS OF
3(y,,) BY LINEAR METHODS

For a given solution maximum y,, withQ <y, <+,

b Jurst e exply
/

Fig. 1. Linear majorants and linear minorants of w(y)

= exp(y) for a given value of v,.



Heat explosion theory and vibrational heating of polymers

4

3

FiG. 2. Continuous upper and lower bounds of 4(y,,) for an
infinite circular cylinder with Bi = co.

the closest linear majorant to w(y)=exp(y) on
0 £y £y, is the secant s(y, y,,) (cf. Fig. 1):

S(Y, Ym) = €XP(¥m) — D y/ym + 1. (10)

Insertion of (10) for exp(y) in problem (6) and solving
the resulting linear problem under the condition that
its solution is to attain the maximum value y,, for {
=0, p = 0 furnishes a value 8,(y,,) for which holds
that:
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FiG. 3. Continuous upper and lower bounds of 5(y,,) for a
finite cylinder with Bi = 0.
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F16. 4. Continuous upper and lower bounds of &(y,,) for a
finite cylinder with Bi = 0.1.

Oy (Ym) £ (V).

For a given value of y,, with 0 < y,, < 1, the closest
positive linear minorant to w(y) = exp(y) is the tan-

gent t(y,y,) (cf. Fig. 1):
1Y, Ym) = yeXp(ym) + (1 — ym)exp(yn).  (12)

Insertion of (12) for exp(y) in problem (6) and solving
the resulting linear problem under the condition that
its solution is to attain the maximum value y,, for {
=0, p = 0 furnishes a value §,(y,,) for which holds
that:

(11)

O(Ym) = O Ym)- (13)

For y, =1, a critical tangent ¢* is obtained which
passes through the origin (cf. Fig. 1). From ¢*, a value
6* results which constitutes a universal upper bound
for 6(y,,) for any value of y,, (cf. Ratner and Koborov
[3], Hudjaev [12]).

In order to show how the linear approximation
method works and in order to give an impression of
how good the bounds are which can be derived, the
proposed method is applied to the problem of an
infinite circular cylinder where the exact solution é(y,,)
is known for any value of Biot’s number: (Bi) > 0 (cf.
[6]). In Fig. 2 the result is given for Bi = o«c. For Bi
= oo, the exact value §, = 2 results and one finds the
lower bound . = 1.815 and for the upper bound §,,,
= 2.1275.

For Bi = 0.4, the exact value §, = 0.26639 results
and one finds the lower bound &, = 0.259 and the
upper bound §,,. = 0.2668.

The same method will now be applied to the
problem of a finite cylinder of the length L= 30 mm,
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FiG. 5. Continuous upper and lower bounds of 8(y,,) for a
finite cylinder with Bi = .

and the radius R = 4mm, which has been under
investigation in [4] also. For this sample shape, the
exact solution of problem (6) is not known. The
resulting bounds from the approximation by linear
majorants and minorants for the Biot numbers Bi = 0,
Bi = 0.1 and Bi = - are given in Figs 3-5. The upper
and lower bounds of the critical values J, are listed in
Table 1.
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Table 1. Upper bound 8* and lower bound &y, of the critical
value d, for various Biot-numbers Bi for a finite circular

cylinder with L= 30 mm and R = 4mm

Bi =10

Bi =)} Bi = .

5* 0.00404 Q02071 1370

Sage 0.00368 0.01%9 D147t
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THEORIE DE L’EXPLOSION THERMIQUE ET DU CHAUFFAGE
VIBRATIONNEL DES POLYMERS

Résumé—Lorsqu’une éprouvette cylindrique de polymére est soumise 4 une contrainie sinusoidale

d’amplitude constante, des fréquences peuvent apparaitre pour lesquelles une ‘explosion thermique’ conduit 4

la destruction de Iéprouvette. On montre comment les frontiéres de ce domaine de fréquences critiques
peuvent étre déterminées par application des méthodes linéaires.

THEORIE DER WARMEEXPLOSION UND DAS AUFHEIZEN VON
POLYMEREN DURCH SCHWINGUNGEN

Zusammenfassung—Beim Dauerschwingversuch mit konstanter Spannungsamplitude an einer zylindri-

schen Polymerprobe koénnen Schwingungsfrequenzen auftreten, bei denen eine Wérmeexplosion zur

Zerstorung der Probe fiihrt. Es wird gezeigt, wie die Ober- und Untergrenzen dieser kritischen Frequenzen
durch Anwendung linearer Methoden abgeleitet werden konnen.

TEOPUS TEMJIOBOTO B3PBIBA M BUBPALIMOHHbBIA HATPEB ITOJMHMEPOB

AHHOTAUMA -

[Mpu CUHYCOMIALHOM HATPYXEHHM LM IMHIPHYECKOIO NOMHMEPHOIO 00pailia ¢ 1HOCTO-

SHHOM AMIUINTYAOH HaNpsKEeHUS BO3HMKAIOT BHOPAUMOHHBIE 4YACTOTBI, TPH KOTOPBIX «1EILIOBOW
B3PBIB» [IPUBOAMT K paspylieHHio obpasua. [Mokaszano. xkakuM oOpa3oM B AMHEHHOM NPUOTHKECHUH
MOXKHO OHDEIETATH BEPXHHE H HIOKHHE HPECibl TaKUX 4acT101.



